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PREFACE

The modern control and programming problems studied in
this memorandum are a common mathematical formulation of situa—
tions that arise in diverse areas. Common examples occur in
the control of aircraft and missile regimes, control of reactors,
and control of inventories. These problems have been studied
at RAND over a period of years by various methods, and have
been the subject of extensive study by Soviet mathematicians
as well. The present memorandum studies these problems from
the point of view of the calculus of variations. The relation—
ship of this study to previous RAND work and some of the Soviet
work 1s discussed.

This paper is scheduled to be published in ‘The,Jou;nal

_Qf‘Mathemgp;cal Analys;s and AQplicationg.
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SUMMARY

It is shown how a fairly general control problem, or pro—
gramming problem, with constraints can be reduced to a special
type of classical Bolza problem in the calculus of variations.
Necessary conditions from the Bolza problem are translated into
necessary conditions for optimal control. It is seen from
these conditions that Pontryagin's maximum principle is a trans—
lation of the usual Welerstrass condition, and is applicable
to a wider class of problems than that considered by Pontryagin.
The differentiability and continulity properties of the value
of the control are established under reasonable hypotheses on
the synthesis, and it 1s shown that the value satisfied the
Hamilton—Jacobli equation. As a consequence, a rigorous proof
of a functional equation qf Bellman is obtained and i1s shown
to be valid for a much wider class of problems than heretofore
considered. A sufficlency theorem for the synthesis of control

is also given.
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VARIATIONAL METHODS IN PROBLEMS OF
CONTROL AND PROGRAMMING

1. INTRODUCTION

A controlled, or programmed, system is one for which the
state at time t 1s represented by a real n—dimensional vector
x(t) -‘(xl(t), wees X7(t)) that is determined by a system of
differential equations and initial conditions,

1 .
(1.1) %t— - Gi(to»x:“)'o xi(to) - Xé, i=1 ...y n,
where u = (ul(t), .es, U™(t)). The mdimensional vector u(t)
is called the control function, or control, or the program for

the system; it 1s usually required to satisfy constraints
(1.2)  RI(t,x,u) > 0, J=l, vuu, 1

The problem of optimal control, or the programming problem, is
to choose the control u(t) so as to bring the system from the
given initial state to a terminal state (t;,x;), or one of a
collection of terminal states [(tl,xl)}, in such a way as to
minimize (or maximize) a functional

-5
(1.3)  3(u) = (tyxy) + [ £(t,xu)at,

%o
where g 1is a function defined on the set of terminal states
and the integral is evaluated along the solution of (1.1)
corresponding to the choice of u(t). A more complete and

precise statement of the problem will be given in Sec. 2.
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It is generally recegnized that in the absence of the
constraints (1.2), control problems, as usually formulated,
are special cases of the problem of Bolza in the calculus of
variations. In attacking problems in which coenstraints ef the

form (1.2) are present, as well as constraints of the form

t,
1 |
(1.4) f ok(t,x,,u):dt < ck‘, k=1, ..., K,

to
several avenues have been explored. One is the "maximum
principle” developed by Pontryagin and his collaboraters
Beltyanski and Gamkrelidze [13] for problems of the following
type. The constraints are independent of x and require u
to lie in a closed set, the function g 1s absent, the terminal
state x;, 1s a prescribed vector, and the terminal time 1is
arbitrary. An extension of the maximum principle to problems
in which the time of termination tl is fixed, X is free,
and g 1s a linear function of the coordinates was given by
Rozonoer [14].

Another approach, which is formal and heuristic in charac-
ter, is the dynamic—programming argument of Bellman {1], who
presents a functional equation that the value of the minimum
as a function of initial position must satisfy. The terminal
condition in this class of problems has t, fixed and X
free. Rozonoer ([14] has rigorously established the validity
of the functional equation presented by Bellman for those

problems in this class in which
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n
gw I Cx(tl)
i=l

A different set of techniques has been used in dealing
with linear systems (1.1). The problem of determining a control
u(t), subject to the constraints lui(t)l <1, 1 =1, ..., m
that brings x(t) to O 1in minimum time was studied for

systems with

1 n m J
¢ - 3-1 “x * Jfl P1g¥

by Bushaw (5], Bellman, Glicksberg, and Gross [2], and Gamkrelidze
[6]. The problem of determining u 80 as to minimize the time
required for x(t) to hit a moving particle z(t) for linear
systems in which a1J and biJ are functions of time was

studied by Krasovskii [8) and LaSalle [10]. The paper by

LaSalle gives a brief survey of the other papers cited in this
paragraph. Krasovskii [9] has considered the last problem for

systems (1.1) of the form

ol = ri(t,x) + pi(t)u.

In the first part of this paper we shall show how a
fairly general control problem with constraints can be reduced
to a special type of classical Bolza problem. Necessary
conditions from the Bolza problem will be translated into
necessary conditions for optimal control. These conditions

give more information than the necessary conditiOns,presented
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by the authors cited, and are applicable to wider classes of
problems. For example, it will be seen that the maximum
principle is a restatement of the Welerstrass condition in the
calculus of variations and 1s applicable to more general problems
than those considered in [13] and [14]. Results on "bang—bang"
control can be derived from Corollaries 1 and 2 of Theorem 2,

but we shall not develop this topic here.

Theorem 2 of the present paper, which is the main theorem
concerning the necessary conditions, was stated in slightly
different form by Hestenes (7] in connection with aircraft
climb problems, but was never published by him. Because of
the relative unavailability of [7], we shall present the proof
of Theorem 2. The constraint conditions of the present paper
are slightly different from those of Hestenes. We also consider
the case of discontinuous f, Gi, and Ri, and give simple
criteria for normality in a special class of problems.

In the second part of the paper we study the function
W(t,x), which 1s defined as the value of the minimum (or
maximum) of (1.3) as a function of initial position. We deter—
mine the differentiability properties of W under reasonable
assumptions on the synthesis of control, and show that in its
regions of differentiability the function W satisfies the
Hamilton—Jacobi equation. By combining this equation with the
| Weierstrass condition (or maximum principle), we éan rigorously
establish the functional equation of Bellman [1] and obtain a
statement about its regions of validity for a very general

class of problems.



Our last theorem is a sufficiency theorem that is useful
in synthesizing the control. This theerem is a varic -t of the
standard sufficiency theorem in the calculus of variations. A
similar theorem was stated by Breakwell [4]; his statement,
however, needs an additional hypothesis to be valid, and his
proof 1s formal.

We conclude our introductory remarks wi%h the observation
that problems in which constraints of the form (1.4) are present
can be reduced to problems without these constraints by the
introduction of new state variables and associated initial and

terminal conditions as follows:

dxn+k

——af—‘-‘wk(t,x,u), ‘xn+k(t

xn+k

o) = 0 (t,) < ck,

k-’l" vo ey xr

2. NOTATION AND STATEMENT OF PROBLEM

Vector matrix notation will generally be used. Vectors
and matrices will be denoted by single letters. Superscripts
will be used to denote the components of a vector; subscripts
will be used to distinguish vectors. Vectors will be written
as matrices consisting of either one row or one column. We
shall not use a transpose symbol to distinguish between the two
usages, as it will be clear from the context how the vector is
to be considered. If A 18 a matrix of m rows and n
columns, x is an mdimensional vector, and y 1is an

n-dimensional vector, then in the product xA, x must be a
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row matrix, and in the product Ay, y must be a column matrix.
Thus we write the inner product of two vectors X and y
simply as Xxy; a quadratic form with matrix A we ﬁrite as
XAX.

The operator (d/dt) will generally be denoted by a prime.

Thus, the system (1.1) will be written as
a.1) x' = G(t,x,u), x(to) - X))

and the constraints (1.2) as R(t,x,u) > 0. (A vector is non—
negative if and only if every component 1s nonnegative.) If
z(t,x,u) 1s a vector—valued function that is differentiable
on a region nyof‘ (t,x,u) space, we denote the matrix of
partial derivatives (bzi/bxj) by 2,; the symbol Z  has
similar meaning. For real-valued functlons Z(t,x,u), the
symbols Zx and Zu represent vectors of partial derivatives.
We denote the determinant of a square matrix A by |]all.
Let ¢57be a bounded region of (n + 1l)—dimensional (t,x)
space and let“té be a region of m—dimensional u space. ILet
J‘-,D{.x . Let fb'e a manifold of class C", of dimension

p<n, 1lying in dcn and given parametrically by equations

where o = (al, ceny op) ranges Over an open cube 7kjin
) r~~
p—dimensional space. Points of o will henceforth be denoted
. 4 -
as (tl,xl)*; we shall call ¢/ the terminal manifold. Let
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r(t,x,u) be a real-valued function of class C" on oér, let
g(o) be a real-valued function of class C" on‘7ei and let

the vector—valued functions G(t,x,u) = (Gl, veey G7) of (1.1)
and R(t,x,u) = (Rl, .es, R¥) of (1.2) be of class C" on aJy.
‘Furthermore, let the constraint vector R satisfy the follow—

ing constraint conditions:

(1) If r > m, then at each point of.xfaat most m
components of R can vanish.
(2.2) 5f 1,3
(11) At each point of the matrix (3R /duY), where
i ranges over those indices such that Ri(t,x,u) = 0

end § =1, ..., m, has maximum rank.

Consider the class of all functions u = u(t) that are
plecewise ¢' (i.e., each component u1 of u 1s plecewise
continuous and has plecewise continuous first and second
derivatives) on the closure of the projection of dcyon the
t axis, and have range contained in 745; For each such u we
‘can obtain a continuous solution of (1.1) that defines a curve
K, with possible corners, in 00/ Let@ be the subclass of

this class of functions u with the following properties:

(1) The curve K 1s defined and is interior to¢17/for
ty < t < ty, where (tl’xl) = (tl,x(tl)) is a point
of é7i and K does not intersect &/ for any

tg <t <ty

(11) Along K, the constraints;(l,e) are satisfied; i.e.,
R(t,x(t),u(t)) > o.
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The class CZ, which depends on (to,xo), is called the class

of admissible controls. Por a given (t it may be void.

0*%o)
The problem of optimal control is to find an element

» :
u e CZ that minimizes (or maximizes) the functional

t,
(2.3) J(u) = g(o) +\/‘ . f(t,x;u)dt
%o
over all u € CZ; where the integral 1is taken along the curve
K corresponding to u, and o 1s the parameter value associ-—
ated with (tl,xl) - (tl,x(tl)). For definiteness we shall
henceforth assume that (2.3) is to be minimized.

We note that the problem of optimal control as presented
here 1s equivalent to the problem in which g ® 0 or the
problem in which f = 0. The equivalence of these problems
can be shown by making transformations similar to those used
to show the equivalence of the problems of Bolza, Lagrange, and
Mayer in the calculus of variations ([3], pp. 189-190).

2. THE EQUIVALENT BOLZA PROBLEMS

Let y = (yl, ceey ym) be an m—dimensional vector. To
the system (1.1) adjoin the system of diffaerential equations

(3.1) y' = u, y(to) = 0.

The following problem of Bolza in (n + m 4+ 1)—dimensional
(t,x,y) space with differential inequalities as added side
conditions 1s clearly equivalent to the problem of optimal

control posed in Sec. 2.
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Problem I. Pind an arc (x(t),y(t)) that minimizes

7 t
(3.2) g(o) +\/‘ 1 r(t,x,y')dt
%o
in the class of arcs that are piecewise C", that satisfy the

differential equations

(3.3)  o(t,x,y') — x' = 0,
the differential inequalities
(3.4)  R(t,x,¥y') 20,

and the end conditions

x(‘to) = xO’ y(to) = yo = 0,
(3'5) tl - tl(‘d), X, = xl(o),

Yy = Y(tl)" =1,
where n = (nl, cees MM

By means of a device used by Valentine in (15], we obtain
the following problem of Bolza, which has no inequality side

conditions and is equivalent to Problem I.

Problem II. Find an arc (x(t),y(t),e(t)), where
£ = (51, ..., £¥), that minimizes (3.2) in the class of arcs

that are piecewise C", that satisfy the differential equations



RM—2888
10

G(t:x:Y') -x' =0,

(3.6)
R(t:x’yl) - (g,)Q = 0,

and the end conditions (3.5) and
(3.7) i(to) “60 = 0, ﬁ(tl) - 51'3 T,

where T = (15, ..., ¥°) and (¢ )% = ((¢1))%, ..., (£5)2).

Let u*eabe an optimal control, 1let K* be the corre—
Vsponding curve, and let x*(t) be the function defining K*,
for t, <t < t). Let ¥ (t) denote the solution of (3.1)
for u = u*. It follows from the preceding discussion that
(x*(t),y*(t)) satisfies Egs. (3.3) — (3.5) and minimizes (3.2).

Hence the arc¢ defined by (x’(t),y’(t),ei(t)), where
(g’(t)')z - R(t’x‘}y*')l e’(to) = 0,

furnishes a minimum for Problem II. We denote this arc by
* L I T I 3 * ! *t
K,. We assert that at every element (x ,y ,& ,x ,y ,¢ )
of K, the equations (3.6) are independent; that is, the

matrix

has rank (n +r) along K,, where I is the n-dimensional
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identity matrix and 2 Z' 1s an r x r diagonal matrix with
entries 2(&1)l on the diagonal, 1 =1, ..., r. In order to
prove the assertion we firast suppose that the first ry Trows,
0<ry<r, of the submatrix (Ry. 0O —2 E') have elements
2 51 ¥ 0, and the remaining rows have elements 2 gi = 0.

This can always be achieved by permuting rows and relabeling.

The matrix (3.8) now has the form

(Al D

\Az

where D 1s an (n + rl) by (n + r2) diagonal matrix with
nonzero entries on the dlagonal and O 1is a zero matrix. The
matrix A2 consists of the last r — Iy Trows of the matrix

R For each of these rows, we have (&i)' = 0. Consequently,

g
we have Ri(t,x*,y*') =0, 1=r;,+1, ..., r. From (3.1) we
'see that this is equivalent to Ri(t,x*,u*) = 0, for
i=r,+1, ..., r. From the constraint conditions (2.2) it
follows that r —r; < m and that the matrix with elements
bRi/auJ, t=r;+1 ..., r, J=121 ..., m has rank r - ry
for (t,x#,u*) along K;. Hence, 1t follows that A, has |
rank r —r; and {3.8) has rank (n + ri) + (r —'rl) =n+r,
as required.

The above argument actually is not restricted to K;} it
shows that (3.8) has rank (n + r) at all elements

(t,x,y,€,x',y',£') for which (3.6) holds.
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4, NECESSARY CONDITIONS FOR PROBLEM II

Since K; furnishes a minimum for Problem II and the
matrix (3.8) has rank (n + r) wherever Egs. (3.6) hold, it
follows (Bliss [3], McShane [11]) that the following necessary

*

conditions hold along K2:

Theorem 1. There exlist a constant XO > 0, an n—dimen-=

sional vector A(t), and an r—dimensional vector u(t),

defined on the interval t, <t <t such that (xo,k(t),u(t))

1’
1s never zero and such that X(t) and u(t) are contlnuous,

- except perhaps at values of t corresponding to corners of

K;, where they possess unique right—hand and left-—hand limits.

Moregver,‘the function

(4.1) P(t,x,¥,6,x',¥', 8", A, X,0) = A f + A(G — x') + k(R —£1?)

satisfies the following conditions along K;:

(1) (Euler—Lagrange equations) Between corners of K;,
we have |

del dF ] dF ]

(#.2)  —b- = B g = Fys ¢ = By

At a qqrneg,.these equations hold for the unigue one—sided limits.

(1a) (welerstrass—Erdmann) At a corner of K;, Fx" Fy"

Fei» and (F—x' P —¥' By, — &' Fgy) have well-defined,

one-sided 1imits that are equal.
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(11) (Transversality) At the end point
* * . * »

Fyl ylf] = 0, Fet g’l‘l’ = 0.

(111) (Welerstrass) For all (t,x,&,y,X',Y',0') ¥
(t,x,&,y,x',y',¢') and satisfying (3.6), the inequalit

(u'u’) 6(t1x:’:€)x' DAV AN O A4 ,KO,,X.M)? 20

holds, where

6‘! F(t,x,y,i,x',Y",C')' - F(.t,x,Y:‘ﬁ,x',Y',&')

—_ (xl —_ xAI)F

x!' ~ (y' - Y")'Fyt - (¢ - e')‘Fﬁu

the functions Fx' and Fg. being evaluated at

(t,x,y,6,x',5',€",24,%,1), and the arguments (Xy,A,n) Dbeing

~omitted throughout .

(1v) (Clebsch) For every vector (mp,x) ¥ O, where

= (Wl: sy ‘"’n): p = (P‘ 3ty pm)r and x = (Kﬁl} e xr)"

that 1is a solution of‘thegliDQQr qy§tem

(4.5) Gy.p — Ir =0,

Ryp = 28'% = 0,
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the following inequality holds:

r .
. | | . 0F 4,12
(4.6) T FPoagr TP Pogp—2 151 wr(x7)° > 0.

D. NECESSARY CONDITIONS FOR PROBLEM I

We now follow Valentine [15]) and translate the necessary
conditions for Problem II into necessary conditions for
Problem I. We first consider the Fuler equations. Prom (4.1)

we get
. 41
(5.1) P = O, pei, - —2ptel’, 11, .o., 1o

Hence it follows from the third equation in (4.2) that

d(u g )/dt = 0 along K2 This and the continuity of Fg.

at corners of Ké imply that u« E is constant along Ké
Prom the transversality condition (4.3) we get Fe'elf = 0;
from (3.7) we obtain €1¢ = 1, where I 1is the rxr
identity matrix. Therefore, we have Fé' = 0 at the right-—
hand end point of K;, and consequently uiei' = 0 along K;.
It now followe from the second equation in (3.6) that along

»
Ky
1.1

A similar argument shows that along K;,, we have pr, = 0.

We now introduce the function

(5- 3) H(tf:-x.p y's kow A ) = XO f(t 2 X, ¥ )I + )‘G(t » X, Y' ) .
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Clearly,

(5.‘&) PueH-— X' + ll(,R _ g‘12’).

The following are immediate consequences of (5.4):

Fx - }& + qu’ Fy' = Hy. + U-Ryn
(5.5)

. . 1 . ’ 1 * L
Since Fy. = 0 along Ké, we see that glong K2 we have

(5.6) Hyo + BRy, = O.
Prom (4.2) and (5.5), along K; we also have
(5.7) At =~ (H + HR).

It follows from the vanishing of Fy, and FE' along
K;, and from (5.4), (5.5), and the second equation of (3.6),
that

(5.8) F-x'PF,

-yt
X y' R

y' - g' pg| = H

along K;- Hence 1t follows that the transversality condition

becomes
(5.9) losa + Htla —‘xxlo‘- 0.

The relationships used to establish (5.8) and the fact
that (t,x,¥',{') satisfies the second equation of (3.6)
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enable us to translate the Weierstrass condition (¥.4) into

the condition
(5'10‘) H‘(t,x,Y",‘Xo,X) pd H’(t:XoY'.XOJ)-

It 1s an immediate consequence of (5.4) that (¥.6) becomes

1)2

r
5.11° P({H + WR) ;.. )p — 2 Z‘ui 0.
(5.11) Jyryr )P ZHeT 2

1

If R' > 0 at a point of Ky, then by (5.2), ul=o. 1If

R! = 0 at this point, let w =0, let p = 0, and let x be
a8 vector with i-th component 1 and other components 0. Then

1. 0, (mp,x) 1s a solution of

(w,psx) # 0; and since ¢
(4.5). Hence from (5.11) we get ,ui < 0 at this point.

Consequently, we always have
i ! *
(Vi S 0 8.101’18 %J 1 - 1, ceey I

Iet (t,x,y) be a point of K; such that at most r,
where r; < m, components of R(t,x,y') wvanish; we suppose
for definiteness that these are the first ry components. It
follows from (2.2)-(11) that the system of linear equations

m -1 _
le gBTTpJ - agixi -0, 1 =1, coep 1y,
J=1 dy ’

r,.
has a solution in p and K = (xl, ceey, X 1) such that p ¥ 0
and X = 0. It now follows from the second system of equations

in (3.6) and the assumption that RY >0 for J> ri, that
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the system (4.5) has a solution (p,m,x) such that p ¥ O
and % = 0. Let J> ry-. Since indices J > ry correspond
to components R > 0, 1t follows from (5.2) that uJ = 0 for
J> r,. Hence each term in the second summation in (5.11)

vanishes, and from (4.5) we have

(5.12)  p((H + BR)yiyi)p 2 0

for any solution vector p of the system

L | _
5'13) z ’l P = 0, 1 = 1, co ey b 4T

The conclusion Jjust stated holds, of course, even if m
components of R vanish. In that case, however, the system

(5.13) has only the trivial solution.

6. NECESSARY CONDITIONS POR THE CONTROL PROBLEM

The following theorem, in which necessary conditions for
optimal control are given, is an immediate consequence of the
conclusion obtained in Sec. 5, and of the use of (3.1) to
Justify the replacing of the argument y' by u, wherever y'

occurs. The function H 18 now

H(tixr“) x,'orl ) - X'or(t) X,u) + M(t: x,u).

Theorem 2. ILet u € ¢ be an optimal control, lst K

be the corresponding curve, qnqupt'\xf(t) be the functien
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defining Kf on [to’tl]‘ Then there exist a constant

Xo > 0, an n—dimensional vector A(t) defined and continuous

on [to?tl]’ and an r—dimensional vector u(t) < 0 defined

and continuous on the interval [to,tl], except perhaps at

*
values of t corresponding to corners of K , where it

possesses unique right—hand and left—hand limits, such that

the vector (Xo,k(t)) never vanishes, and such that the following

conditions are‘fulfilled:

Condition I. Along K* the,fq110w1ng equations hold:

(6.1) x'(t) = Hy,
(6.2) A (t) = — (H_ + BR,),
(6.3) H, + #R, = 0,

(60)“) ui Ri = 0‘, 1 = 1‘, e 0 0y r.

At the end point (tl,x;) gg K' the transversality conditiqn

holds:

(6.5) AEs + Ht,  — A, = 0.

Along K*, the function H is continuous.
Along

condition II. For every element (t,x*,u*) of K* and

every u such that u = u(t) for some u gg;:CZQ we have

(6.6) H(t,x ,u,2g ) > u(t,x’,u',xc,x).
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Condition III. At each point of K let R denote the

vector formed from R Dby taking those components of R that

vanish at that point. let e = (el, ooy em) be a nonzero

solution vector of the linear system ﬁ;e = 0 at a point of

K. Then e((H+uR), )e > O at this point.

Equations (6.1) — (6.4) are the Euler equations, Condition
II follows from the Welerstrass condition (5.10), and Condition
III follows from the Clebsch condition (5,12). The continulity
of H along K* follows from the continuity of the left-—hand
member of (5.8) along K;, and the continuity of X follows
from (5.5) and the continuity of F,, (Welerstrass—Erdmann
corner conditions). The nonvanishing of (xo,x) along K
is established as follows. If (XO,X) were zero at a point of
K*, then from (6.3) we would have uR, = O at this point.
For the sake of definiteness, suppose that the indexing 1s such
that Rl =0 for 1 = 1, ..., Ty, where by (2.2), r; < m.
Hence, by (6.4), we have ui =0 for 1> r,. Thus the
condition uRu = 0 reduces to a system of linear equations in
‘ul, ceey url with coefficient matrix (BRi/auk), 1=1, ..., vy
K =1, «.s, m. From (2.2) — (11), this matrix has rank ry-
Hence ul = Je0 = uri = 0 1s the only solution of the linear
system. Thus, we have shown that if (Xo,k) is zero at a
point, then the vector (XO}X,u) must also be zero, contradicting

the assertion of Theorem 1.
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If the constraints are specialized, then important

s8implifications can be effected in the Euler equations.

Corollary 1. Let the constraints be of the form

Bi(t,x) < ul < Ai(t,x), i =1, .v., m,

where Ai > Bi and each A1 and B1 isVOf“class c* on oéj.

Then:at each polint of K* we have

>0 ir u'l . g,

HiJ'o if Bi<u‘*i<A1)

u ‘ ‘
' S o ir u*i = Ai’ 1 = l‘,v 0 e M.

\

If we write the constraints as AL — ul > 0 and
u1 - B1 >0, 1i=1, ..., m, we obtaln a 2m-dimensional con-

straint vector with components A1 - ui and ui - Bi. It

1 1 and the form of the con—

follows from the condition A~ > B
straints that (2.2) is satisfied. The conclusion of the
corollary follows from (6.3) and (6.4) by stralghtforward

calculation and use of the condition u < O.

Remark. If the i-th component of u 1s constrained only
from one side, say u' < A'(t,x), then H, =0 1ir ul ¢ al
11 by |

and H, <0 if u" =} Similar statements hold for
u

ui Z‘Bi.

Another important special case 1s one in which the con—
straints are independent of the state, that is, R(t,x,u) =
R(t,u). Since Rk - O 1in this case, we have the following

corollary:
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Corollary 2. If R 1is 1ndependent.qf X, then equation
(6.2) becomes

(6.2)" A = - H.

In the problem considered by Pontryagin {13], the con—
straints required u to lie in a fixed closed set, independent
of time t and position x. Equations (6.1), (6.2)', and
(6.6) constitute the maximum principle as stated by Pontryagin.
Our function H 1s the negative of Pontryagin's, so that his
maximum appears as a minimum in our paper. Note, however, that
the Euler equations and Condition II of Theorem 2, which 1is the
Welerstrass condition, give a minimum principle for a wider
class of problems.

i i

Remark. Note that 1f the A™ and B~ of Corollary 1 are

constants, then the results of both corollaries are valid.

7. _INTEGRABLE CONTROLS

Instead of considering functions u = u(t) that are

. plecewise C", we can consider functions that are merely
assumed to be Lebesgue integrable. 1In this way we can define
a class of admissible controls CZ*} and we can look for an
optimal control u* in CZ+Z The curves K corresponding to
functions u 1in a+ will be defined by absolutely continuous
functions x(t), and so will be rectifiable. We can reduce
the control problem with constraints to a Bolza problem with—

out constraints as we did before, except that the functions
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(x(t),y(t),&(t)) are now absolutely continuous. To this
problem we can apply a theorem of McShane (Theorem 16.1, [12]).

We can then translate back to the original control problem and
obtain the result that the conclusions of Theorem 2, appropriately
modifled, hold almost everywhere along a curve K* corresponding

‘ * A § , : . a+
to a control u that minimizes (2.3) over all u in .

8. NORMALITY

A piecewise C" minimizing curve K‘, or equivalently
the corresponding curve K; of Problem II, is said to be
normal if there are no sets of multipliers with XO = 0. (See
(3], pp. 213—219.) 1If the minimizing curve is normal, then the
multipliers can be chosen so that XO" 1, and with this cholce
of XO they are unique. If the curve is not normal, there
may be no neighboring curves that satisfy the differential
equations, constraints, and end conditions. Necessary and
sufficient conditions for normality are given in [3]. These
criteria applied to the present problem would involve variations
along K; and would generally be difficult to apply in practice.
We shall give a condition for normality in the control problem
that 1s sufficient, but not necessary. It 1s, however, easier
to apply in practice, and reduces to a very simple condition
in the special case that the terminal manifold ;7’18 n—dimensional.
At (tl,x;), the end point of K’, let r, components '
of R(tl,x;,u’(tl)) vanish. Prom (2.2) — (1) we get r; < m.
Let ﬁ denote the rl—dimensional vector formed from R by

taking those components of R that vanish at (tl,x;), and
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let C' be the vector formed from i by taking the corresponding
components. Then from (6.4) we have uJ(tl) = 0 for those
components of W that are not in a. let M denote the n

by p matrix with typical element

1
(8.1) (Gi é% — a—x})’ i = 1’ o0 0y n, J - 1., .. o l, p*’
d90Y  doY

where the elements are evaluated at the end point of K*. Let

C denote the (n + rl) by (m 4+ p) matrix

Gu M |
A s
R, 0

‘ o *
where G, and ﬁu are evaluated at (tl,xl).

If K* is not normal, then there exists a set of

multipliers (xo,x,u) with XA, = 0. PFrom (6.3) and (6.5) we

0]
see that, at the end point (tl,x;) of K*, the vector

(x,ﬁ) 1s a solution of the linear system (X\,il)C = O. The
following theorem 13 now a congsequence of a standard theorem
concerning the solutions of homogeneous linear systems and the

fact that (A,n) cannot be zero if Ag = O

Theorem 3. If the rank of C is (n +‘r1), then K"

Note that C can have rank (n +\r1) only when
(n + rl) < (m + p), and that Theorem 3 is not a necessary

condition.
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Corollary. If 7 is n—dimen_ssipnal and K’ i‘a’not tangent

, =~
to o , then K 1s normal.

—~
If </ 1s n—dimensional, the matrix M 1s an n by n
A
matrix. By (2.2) — (11), the r, by m matrix R, has rank
ry. Hence, C has rank (n + rl) whenever M has rank n.

, * &
Since K is not tangent to c/ , the matrix

1 %

G X1g ‘
has rank n + 1. If for each J =1, ..., n we multiply the

first column of this matrix by - atl/bod‘ and add the result

to the j—-th column, we get the matrix

Hence M has rank n and the corollary follows.

9. DISCONTINUOUS f, G, AND R
Let'mbe a manifold of dimension n, lying in 00,/ and

dividing oO/i-nto two regions, such that some or all of the
functions f, G, and R are discontinuous across m'. Let
the discontinuity of a function be such that the function and
its derivatives have unique one—sided limits. Purther, let
us assume that K intersects // at (tr,x5) = (ty,x5(t))
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and 1s not tangent to 7L at this point. It can be shown by
appropriate modifications of the arguments in (3] (pp. 196—202)
that the multipliers A and KW of Problem II need not be
continuous at t -‘tl, but will have unique right—-hand and
left—hand limits at (t2,x2) as will P and its various
partial derivatives when evaluated along K;. Although Fx,,
F_., and F&' need not be continuous across 734, the

y
expression

(P — x' For = y' Ry' — & Fg,)dt + F,.dx, +‘Fy.rdy2

+ Fg'deg

has equal right—hand and left—hand limits along K; at (t2,x2)
for all differentials d:t2, d;vc2 on 77b and all dyz and dvga.
For the original control problem this translates into the

condition that
+ . Y 4 + — 3 \a -
(9.1) (H" — H )at, — (2 AT)dx, = O

at (tg,xg), where the one—sided limits are evaluated along
R
K .

,10. DEFINITION OF SYNTHESIS

Consider a point (tl,xl) of the p—dimensional terminal
—
manifold <, where 0 p<n. Let ‘ff' denote a region 1in
(n — p)—dimensional space over which a vector ¢ ranges. If
p=n, then @ 1s the zero vector. Let u&(t;tl,xl,w) be
a function defined in some interval [to,tll, where
to = to(tl,xl,w), such that the following condition holds:
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*
Assumption 1. (i) The function u 18 plecewise ("

on [to,tl], and its range lies in . (11) 1f u is
substituted into (6.1) (or equivalently into (1.1)), the

resulting differential equation
, * ! )
(10.1y x' = a(t,x,u (t;tl,xl,w)), x(tl) = X,

has a continuous solution x*(t;tl,xl,w) on [to,tI] such

that (t,x*) lies incla/and R(t,x*,u#) > 0.

We denote the curve corresponding to x*(t;tl,xl,w) by
K(ti,xl,w).
We now suppose that the assumptions Just made for a
paff}cular point (tl,xl) hold for all points (tl,xl) of
«/ . From (2.1), we have (tl,xl) = (tl(a),xl(d)), where ¢
ranges over an open cube7Xﬁ in a p—dimensional space. Let 6

be an n—dimensional vector defined as follows:
(10.2) 6= (0,9), 0 £, oe¢ X'.

We define functions

t'o(‘e) & t,o(tl(o)‘. xl(Q)‘:Q):
(10.3)
tl(e) t‘tl(o),

and functions
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U'(t:e) § u'(t;tl(a),xl(a),w),
(10.4)
Xf(t,a) = x’(titl(o):xl(“):¢):

for ¢ in A, 9 in A", and t,(6) <t <t (6). The

differential equation (10.1) can now be written as
* . . )
(10.5). x' = a(t,x,u (t,8)), x(tl(e)) - x1(°)°

Clearly, x*(t,G) 1s a solution of (10.5). We shall denote
the curve K(tl,xl,o) by K(6).

Let O denote the domain of definition of u (t,8) and
x (t,8); that is, the set of points (t,8) 1in (n + 1)—
dimensional space with 6 as in (10.2) and to(e) <t<L tl(e).
Clearly, Q has nonvoid interior, which we denote by QQ. It
follows from (2.1) and (10.3) that tl(e) defines a C¢C"
manifold'7ﬁ& of dimension n 1in (t,8) space and that 721
is part of the boundary of §. We also suppose that to(e)
defines a C" manifold of dimension n.

A set of functions

t = ti(e), i = l, 2,- s0oey Uy

defined and C" on the region defined in (10.2), with t,(6)

as in (10.3) and such that

to(BJ < ti+l(e) <-tl(e)w‘ 1=1, oo, @ -1,
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will be said to induce a regular decomposition of Q. Clearly,

each ti(O), 1 >2, defines a C" manifold 7Z1 of dimension

n lying in Q0. wWe let 7,41 denote the manifold defined

(0]

by to(e). We define subregions Qi of Q- as follows:

Q, = E((t,8) € 0%t, 1(8) < t < t(0)), 1=1, ..., a-1.

We shall say that a function h(t,6) 1s piecewise C(k) on

2 1f on each subregion Qi it agrees with a function

k)

o = .
h(i)(t,e) that 1is C on fi;, the closure of Q.

T™wo more assumptions can now be stated.

o‘

Assumption 2. The function x*(t,e) maps in a

one—to—one fashicn onto a subregion‘79 of the region‘lffin

(t,x)-space, and maps'7?a in a one-—to—one fashion onto an

+1
n-dimensional manifold that forms part of the boundary of 7&?.

Assumption 3. There exist functions ti(e) that induce

a regular decomposition of Q such that: (1) The function

u (t,0) 1s plecewise C" on Q. (11) If f, G, or R
possess manifolds of discontinuity that lie in 7{?(&3 discussed
in Sec. 9), then each of these manifoldsis coincident with the
image of some set 771, 1 =2, ..., a. (111) Por each |

J

component R of the constraint vector R, we have either

J *, *
RY(t,x (t,6),u (t,8)) = 0 on Qy, or, with the possible
exception of a finite number of points, RJ(t,x"(t,8),u”(t,8)) > 0

on Qie
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We shall denote the image of Qi by 7f;. 1 =1, «eo, a,
and the image of 7, by 7, 1a=2, ..., a+1. The
function x also maps\7z1 onto é7i whence we may set
;311 = é7/. Note, however, that the mapping.of:'77i onto 47/

in general 1s not one—to—one.

Iemma 1. The function x*(t,e) is continuous and is

plecewise C" on Q. The sets 7271, 1=1, ..., a+1l, are

manifolds of class c".

Let uZI) denote the function that i1s C" on {Q; and
that agrees with u on Q. Let G(y) denote the function
that 1s C" on 7 x 2 and that agrees with G on 761 xU.
We may extend the function “21) to a function EZI) that
has range 1n,12fand‘that is ¢" on a region containing ﬁI
(and hence 771 and 77%) in its interior. We may also
extend G(l) to a function 3(1) that 1s C" on a region
containing j?g x Z{ in 1ts interior. It now follows from
(10.5), the properties of tl(o) and xl(o), Assumption 3—(1),
and standard theorems about the behavior of solutions of
differential equations with respect to parameters and initial
conditions, that xf(t,e) is C" on 5;. Since "7?; is
given by t = t2(9) and X = x2(0) = x*(t2(6),9), i1t follows
that t2(9) and x2(9) are C". The argument just given can
be repeated with the appropriate modifications on 92, and 75;,
with t = t2(9) and Xx = xg(e) as the boundary conditions
for (10.5). We then see that x  has the desired properties
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~on ﬁ; and 1s continuous on §I~v ﬁ;, and that 7373 is given
by t = tj(e), X = x3(9) = x*(tB(G),G). Proceeding inductively
in this fashion, we can establish the desired properties for
*

X . We note that the sets 7%1, i=2, ..., a + 1, are given

by functions
(10.6)  t = t;(8), x = x;(8) = x (t,(0),8),

and hence are manifolds of class C(CV.

lc‘ Qo at positive

1

Assumption 4. For every subregion

distance from 7?1, there exists a positive constant d(Q

such that ||xp(t,0)|] » a(e’) on a.

1

(At boundary points
of Q° and at points of 771, i > 2, the bounding away from
zero of the determinant 1s to be interpreted for the various

limits.)

It can be shown that 1if 67{13 n—dimensional, then the
assumption that each curve K(8) 1s not tangent to &7/1mplies
the existence of a constant & > O such that |[x;(t,9)1| > d
on all of Q.

It 1s an immediate consequence of Assumption 4 and (10.6)
that the manifolds 7%,, 1 =2, ..., a +1, have dimension
n. It also follows from Assumption 4 that the curves K(6)
are not tangent (from either side) to a manifold 7@1, 1> 2.

0

From Assumption 2, it follows that on qQ’ the relation

‘x,;.x’(t,ﬁ) can be inverted to give a relation
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(10.7) 6 = 6(t,x),

where 6 1s a single-valued function on '761 It further
follows from Lemma 1, Assumption 4, and the implicit—function
theorem that 6 1s C" on each ), 1 >2, and on the set
7é§ - éfl. Since x*(t,e) is one—to—one, it foilows that 6
1s continuous on . From the identity 6 = G(t,x*(t,e)) it
follows that as (t,x) tends to é7falong K(8), the function
6 will tend to the value €. 1In general, 6 will not tend
to a unique 1imit at points of ;7< It can be shown, however,

r—/
that 1f v/ is n—dimensional and the curves K(8) are not

—~ . -
tangent to ¢/, then €@ 1is C" on 7(3 as well as on vf?,

is> 2.

Assumption 5. (1) For every point (%,x) = (f;x*(?,e))

in 7%2 the control problem (2.3) with initial point (%,Xx)

has a unique solution in which the optimal control is u*(t,e),
t<tg t,(8), and the corresponding curve is K(6). (1i1)

There exists a multiplier vector (xo(e),x(t,e),u(t,e)) along

each K(6) such that Xy =1 and the functions X,(6) ® X(t,(6),6)
and uy(9) = u(t,(6),0) are ¢! onK'x Z.

The existence of multipliers along each K(6) follows
from Theorem 2; the assumption concerns the properties of

A

1 and My
A function ‘u*(t,e) such that Assumptions 1-5 hold will

be called a normal parametric synthesis of the control.
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’-J
Remark. If v/ 1s n—dimensional and each K(6) is not
' ~
tangent to ¢, then (11) follows from the Corollary of
Theorem 3 and the transversality condition (6.5).
Define

. . »* *

(10.8) U (t,x) =u (t,6(t,x)).

It follows from the preceding discussion that U 1s c" on

each 'ﬁ? », for 4 >2, and 1is C" on j?l-— el Along each

—

K(8), however, U*(t,x) does tend to a limit as o 1s approached.
~

I1f < 1s n—dimensional and the curves K(6) are not tangent

:?’

* -~ K
to , then U 1s C" on 7?1 as well. We call U a

normal synthesis of the control.

11. THE FUNCTIONS X, u, A L

Lemma 2. The functions A(t,f6) and u(t,8) are pilece—

wise C' on Q. Across every manifold 7%1, 1 =2, ..., a,

equation (9.1) holds. If f, G, and R are continuous across

A,» then so is A(t,6).

let ﬁ denote the vector formed by taking those components

RJ of R such that RJ(t,x‘(t,G),u‘(t,O)) =0 on Q. ILet
,ﬁ be the vector obtained from i by taking the corresponding
components. Prom (2.2)—(11); it follows that ﬁu has maximum
rank, say ry, on 91. Let ﬁﬁ be an ry by ry nonsingular
submatrix of ﬁu. Let Hy denote the vector obtained from

Hﬁ by selecting the components corresponding to the columns of
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ﬁu. used to obtain ﬁﬁ‘ In order to simplify the exposition
we shall assume that the same submatrix is nonsingular at all
points of 51. It will be seen from the ensuing discussion
that this restriction can be easily overcome.

From (6.3), we get
(11.1)

Since by (6.4) those components of K that are not included
in & vanish on 5i, we may write (6.2) along each K(6) as

follows:
‘ A =]1A ‘
(11.2) A (£,8) = — Ho + (Hg)(Ry) "Ry X(t1,6) = X;(6),

where the arguments of the functions on the right-hand side are
(t,x*(t,e),u*(t,e)). A proof similar to that used in Lemma 1
can now be used to show that X(t,6) 1s of class C' on Q-
It then follows from (11.1) that i 1s also C' on 51. Since
the other components of § vanish on 51, the vector o 1is
C' on 51.

The same arguments applled to 02, with ﬁu’ ﬁﬁ, Hﬁ, and
ﬁ appropriately redefined and with the proper initial data

X(t2(6),9), show that A(t,8) and u(t,6) are C' on Q-
The initial data X(tz(e),e) are defined by continuity or by
(9.1) 1f 7?2 corresponds to a manifold of discontinuity of

f, G, or R. Proceeding backwards in this fashion, we see

that A and W are plecewise C' on § and have the requisite

continuity properties.
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Define

(11.3) L(t,x) = x{(t,8(t,x)), (t,x) € 0 =1, .vi, a.

We 1list the properties of L(t,x) in the following Lemma:

Lemma 3. The function L 1s C' on each 7@&,

i=2, ..., a,, and on the set i%.—“¥7!' Moreover, if f, G,

and R are continuous across a manifold 7”1, 1 =2, ..., a,

then so is L. Across a manifold 7%&, (9.1) holds with A

replaced by L, where <+ now indicates a limit from the

interior of 4—1 @and -— 1indicates a limit from the interior

—
of jfi. Ir o is n—dimensional and the curves K(®) are not
,_J .

tangent to v/, then L is C' on i%_ also.

The proof of this lemma, except for the next to the last
sentence, is an immediate consequence of Lemma 2 and the
properties of 8(t,x). It 1s clear from the properties of f,

*
¢, A(t,8), x (t,8), and u (t,8) that H(t,x (t,8),A(t,8),u (t,6))
is continuous on each of the sets Q, U 771 and Q, , U :7?&,
1 =2, ..., a. Hence, H(t,x,L,U*) is continuous on each
&,€1u77(1 and Ri—lU 77/1, 1 =2, .0, a. 1If 77(1 is not
a manifold of discontinuity of f, G, or R, then by Theorem 2,
H 18 continuous across 7%& along each K(€). Hence from the
continuity of H on Ry U /7, and Ry, U 77, 1t follows
that H 1is continuous across '7ﬁ;, unrestrictedly in this
case. Since L 1s continuous across 7?2, (9.1) holds across

7?2 unrestrictedly. A similar argument shows that if :371
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is a manifold of discontinuity of f, G or R, then (9.1)
holds across ‘271, also without the restriction that the limits

be taken along K(9).

12. THE VALUE AND THE HAMILTON-JACOBI EQUATION

Let Assumptions 1 to 5 of Sec. 10 hold. Then we can define
a function W(t,x) on'7E by assigning to each point (t,x)
in 7€ the value that the functional (2.3) with (to,xo) = (t,x)
takes along the optimal curve K(6) through (t,x). Thus we

have

(12.1) Wit,x) = w(t,x (t,0))
tl(a)
) +* *
~g(@) + [ e(e,x"(£,0),u"(t,0))at,
t
where 8 and o are related by (10.2). We shall call W

the value function, or simply the value of the control problem.

We summarize the properties of W 1in the following theorem:

Theorem 4. The value W 1s continuous on 7%2 1s ¢c"

on each j?i’ i>2, and is c" on 7€1" é7/. On_each ﬁ?,

i = l ) o0y Of, We have

Wy (t,x) = = £(t,x,U (£,%)) = L(t,x)a(t,x,U (t,x)),
(12.2) |

wx(t,x)‘a L(t,x).

At points_of a manifold /7,, 1 >2, (12.2) holds for the

one-sided limits. If 7}11 is not a manifold of discontinuity
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gg‘ f, G, or R, then wt and wx are continuous across

jﬁ%i. Across every manifold 7ZG, J=2, ..., a, the relation

— + = -
wx dx wt

+ 3 ~ 4
Wy dtJ j dtj - W, de

holds for all differentials dtJ, de along "

Remark 1. If we substitute the second equation of (12.2)
into the first, we see that the value satisfies the Hamilton—

Jacobl equation on each ‘761.

Remark 2. It follows from the properties of 1L, U}, and

® that both W, and W, possess limits as (t,x) tends to

t
/_/

v/ along a curve K(6), even though in general W, and W,
, ~ :

do not possess limits as (t,x) tends to < . If, however,
H
«/~ 1s n—dimensional and the curves K(6) are not tangent to

r/ -
o/ , then W 1s C" on 763.

Remark 3. 1In Assumption 5-(11) we supposed that along
each K(6) there was one set of multipliers with Ap = 1.
The second equation in (12.2) now shows that 1f there 1s one
such set satisfylng the other requirements of Assumption 5,
then it must be unique.

The proof that we now give for Theorem 4 18 an extension
of an argument used in the calculus of variations to prove
the invariance of Hilbert's integral in certailn fields.

It is clear from (12.1) that W 1is continuous. Let

(12.3) t = To(s), x = X4(s), 0<s<1,
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define a curve I' that does not intersect itself and that,
with the possible exception of end points, lies entirely within
some 7{;. For definiteness we take 1 = a. It follows from

Assumptions 2 and 4 that the system of equations
(12.4)  To(s) = t, X4(s) = x (t,6), 0<s< L,

defines a function 6 = 6(s) that is ¢" on [0,1]). Hence
i1f we traverse I’ as s goes from O to 1, we obtaln a
family of curves K(s) = K(6(s)) by means of the function
xf(t,e(s)), where To(s) <tg tl(s). Since the manifolds
A, J =1, ..., a, are given by (10.6), 1t follows that the
intersections of the curves K(s) with the manifolds TZZ%

are given by

X = TJ(S) tJ(e(s))!

(12.5)

x = Xy(s) = x (t5(6(s)),6(s)),  J=1, ..., @

The functions TJ and XJ' J=2, ..., a, are clearly
¢" on [0,1]. Por J =2, ..., a, We can compute dXJ/ds
from (12.5) in two ways,

d L 4T, . dT,
ey el g e
(12.6) & "X T *t¥ T Tt T

where the superscript + 1ndicates that we are taking limits
fram the interior of 763_1, and the superscript — 1indicates
1imits from the interior of 763. Equation (12.6) also holds
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for J = 0, without the superscripts + and —. From (12.5),
(10.2) — (10.5), and standard theorems on the differentiation
of solutions of differential equations with respect to initial
data, we get

4T
: ! dg * ,
(12.7) g5~ = t15 35> Xelt1,8(s)) = (=M, 0),

where M 1is the matrix (8.1) and O 1is the n by (n = p)
zero matrix.

We now consider W along I'. From (12.1) we obtain

W’( To‘(is ) » XO»( S ) ) =

nte .
g(a(s)) +_[ r(t,x (t,8(s)),u (t,0(s)))at.
Ty(s)

Hence dwW/ds exists and is given by

aw _ 1z do ff‘-T—l\‘ -1f-d?—°‘
ds [80 ds + ds ]Tl(s) . das :]'TO(S)
(12.8)
dr Ty(8)
z (7 -rt%) =4 dt,
+ - [ ds ]TJ(S) TO(S) %

* *
where Jf/ds = (fx xg + T, ug)(d6/ds), the superscripts +
and — have the same meaning as in (12.6), and the arguments

of the functions are (t,8(s)). From (6.2) we get
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£, == (At + A6, + qu), and from (6.3) we have

f,=- (XGu + uRu). Hence we obtaln

of ». ‘ * *
3 * "[}t xg + MGy Xg + G, Ug)

(12.9)
d6

: » »
+ (R, xg + Ru‘“e)' 3=
, *
The components of the vector 'u(Rx x;,+ R, ue) can be
written as follows:
r

2 k,. .k *
(12.10) = w (R, x , + R
K=l ol

M r k
Eu )= Z H-,k' oR

- 131 ) n.
ol’ = k=1 a2t ’ ’

If at a point (t,8) in @, we have RS(t,x (t,8),u (t,8)) > 0,
then from (6.4) we obtain w(t,8) = 0. On the other hand,

since Rk(t,x*(t,e),u*(t,e)) >0 on , 1if RE = 0 at (t,98)
then Rk, as a function of (t,6), has a minimum at this point.
Since (t,H8) 1s interior to Q, aRk/391 vanishes at this

point for all i = 1, ..., n. Hence (12.10) is zero for all
(t,8).

If we set 3G/36 = (G, x; + Gulu;), then from (10.5) we
have xze a 3G/d6. Purthermore, we have xge,- x;t. Hence we
may write (12.9) as
ae

Substituting this expression into the integral in (12.8) and

performing the integration gives
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T *’dze‘Tl(S) a 7 = RIS dé
- [X *o d—'s-]'ro(s) - Jfé [(x, xg) — (A xe)ﬂTJ(s)‘ s

If we now use (12.6), (12.7), and the relation x, = G, and

t
substitute the resulting expression into (12.8), using the

definition of H, we get

- dT aX <
dw [( ik do! o 0 (o]}
== = (g . + H‘tl‘ - Ml ) __.] - l:H — - A = ,

a _ + daT, o - dX. 
+ er [kH - H") agi - (A =27) agi'TJ(s)'

From (6.5) we see that the first square bracket vanishes. Prom

Theorem 2 and (9.1) it follows that every square bracket in
a

z vanishes. Hence, since T 1s arbitrary, we have
J=2 ‘
(12.11) W = — H dT + L dx

for arbitrary differentials (dT, dX). The theorem 1s an
immediate consequence of (12.11), the properties of f, G, L,

and U, Theorem 2, and (9.1).

13. AN EQUATION OF DYNAMIC PROGRAMMING
For each (t,x) 1in 7(1 let (Z(t,x) denote the set

of admissible controls u at (t,x). Since U 1s a normal
synthesis, it follows from (6.6) that for any (t,x) in Jf;,

i = l, seoy QO We mve
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(13°1) H(t,x,L(‘t,x)U'(t,x‘)v) - min H(t‘rx:L(t':x)u\)'
u e q(t,x

If we apply (12.2) to (13.1), we see that on 1?1,

(13.2) W, = — . e?i?t,x) [£(t,x,u) + W a(t,x,u)l.

If (t,x) 1lies on a manifold 4o 1= l, ..., a, then the
relations (13.1) and (13.2) hold for the one—sided limits.

Equation (13.2) is the functional equation obtained
formally by Bellman [1]} for control problems in which é7rls
the n-dimensional manifold tl.' constant and f, @, and R
are C". We note that (13.2) holds for more general problems
than these. Since (13.1) is a restatement of the Weierstrass
condition, since (12.2) says that on each 767, W satisfies
the Hamilton—-Jacobl equation, and since Pontryagin's principle
derives from the Welerstrass condition, the relationship between
these items and (13.2) 1is clear.

We remark that computational schemes based directly on
(13.1) in the case that é?rls of dimension p, with p < n,
will encounter difficulties because, in general, wt and wx

do not exist at o . (See Remark 2, Theorem 4.)

14. THE PROBLEM OF SYNTHESIS

Let u*(t,ﬁ) and x*(t,o) be as in Assumptions 1 to &,

and let us replace Assumption 5 by the following:

Assumption 6. Along each K(6), 1let equations (6.1) —

(6.5) hold with Ay =1, and let A(t,8) and u(t,8) have
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the properties described in Theorem 2. Let the functions xl(e)
and ul(e) be as in Assumption 5. Let the function H be such
that (9.1) holds for all manifolds 77LJ, J=2, «v., a.

Assumption 6 consists of those consequences of Assumption
5 that enter into the discussion of Sec. 10. Hence, if we now
look upon W as being defined by (12.1), then Theorem 4 still
holds. In particular, (12.11) holds. Moreover, if we take T
to lie entirely on a manifold /,, 1 =2, ..., a +1, then
the arguments used to establish (12.11) for T 4in some 3{1
show that (12.11) holds for I on a manifold TZ%; 1> 2.
For curves I on ,9{ & 72&, the validity of (12.11) follows
from (6.5). Hence the integral |

(14.1) fH(t,x,L U )dT — L(t,x)dx
r

is independent of path 1n‘7f2for all curves I' caonsisting of

a finite number of arcs, each arc lying entirely in some 7€a
or on a manifold jz?i’ 1=1, ..., a.

From the preceding discussion we see that Assumptiens 1
to 4 and Assumption 6 determine for the contrel problem the
analogue of a field in the calculus of vartiations, with (14.1)
as the Hilbert invariant integral. The following theorem can
- now be established by using the same argument as is used for
the analogous fundamental sufficiency theorem in the calculus of

variatiens:
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Theorem 5. Let Assumptions 1 to 4 and Assumption 6 hold.

Furthermore, let (6.6) hold on 7 for u = U(t,x). Then

*
u (t,8) 1s a normal parametric synthesis of the,gqntrolAand

*
U (t,x) 1s a normal synthesis of the control.
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